引用本文:陈吉江.小波分解高、低频双自回归模型及其在水质监测中的应用[J].水利水运工程学报,2014,(2):95-99
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 953次   下载 1053 本文二维码信息
码上扫一扫!
分享到: 微信 更多
小波分解高、低频双自回归模型及其在水质监测中的应用
陈吉江
余姚市水利局
摘要:
针对一些水库水质监测数据序列不仅具有平稳性、周期性,而且具有显著的多尺度性的特点,在单一自回归模型的基础上,利用多尺度小波分析的原理与方法对水质数据序列作预处理,进行分解与重构,并对重构的不同尺度下的数据子序列分别建立高、低频自回归预测模型,最后叠加各尺度下的预测结果。将该方法应用于梁辉水库4种水质指标的预测研究,结果表明与单一自回归模型相比,预测精度有明显提高。
关键词:  水库  水质预测  平稳时间序列  小波分解  自回归
DOI:
分类号:TV213.4;X832
基金项目:
A wavelet autoregressive model and its application to water quality forecast
CHEN Ji-jiang
Water Conservancy Bureau of Yuyao City
Abstract:
In general, water quality time series not only has stationary and periodicity characteristics, but also has obvious multi-scale features. To improve the precision of the traditional autoregressive models, which were once widely used for forecasting water quality, the autoregressive model combined with the multi-scale wavelet analysis theory is proposed as a new forecasting model called WAR(Wavelet Autoregressive Model ). Finally, this new method and the traditional autoregressive model are applied to predict four water quality indicators in the Lianghui reservoir. The analysis results show that the WAR model has significantly improved the prediction accuracy in comparison with the traditional autoregressive model. At the same time it is also found that the model is feasible and practical, and can only provide references for similar studies. In view of this, when we predict water quality, in order to improve the prediction accuracy, it is important to choose the model according to actual situations, and this point is crucial.
Key words:  reservoir  water quality forecast  stationary time series  wavelet decomposition  autoregressive model
手机扫一扫看