引用本文:王雪红.优化BP神经网络的位移预测模型[J].水利水运工程学报,2014,(2):38-42
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 903次   下载 1015 本文二维码信息
码上扫一扫!
分享到: 微信 更多
优化BP神经网络的位移预测模型
王雪红
河海大学水利水电工程学院
摘要:
针对大坝位移预测常规方法存在的问题,基于改进粒子群算法的BP神经网络(IPSO BP)的大坝位移预测方法,通过IPSO对常规BP神经网络的权值和阈值进行优化,弥补了BP网络的不足,保证了预测精度。以2011-12-21—2013-06-27观测得到的某混凝土重力坝某一典型坝段坝顶的顺河向位移值为研究对象,建立基于IPSO BP的大坝预测模型并进行仿真分析研究。同时,为了验证该模型的拟合及预测效果,建立PSO BP模型、利用最小二乘法求解参数的统计模型进行对比分析。上述研究结果表明,此模型预测精度优于常规模型且拟合效果好、预测结果的平均相对误差小,说明此方法有效可行。
关键词:  改进粒子群算法  BP神经网络  混凝土重力坝  位移  预测  仿真分析
DOI:
分类号:TV698.1+1
基金项目:国家自然科学基金面上项目(51079044);国家“十二五”科技支撑计划课题(2012BAK10B04);水利部公益性行业科研专项经费项目(201301033)
A displacement prediction model based on improved particle swarm-BP neural network algorithm
WANG Xue-hong
College of Water Conservancy and Hydropower, Hohai University
Abstract:
According to the existing problems of the conventional method of dam displacement prediction, BP neural network based on improved particle swarm optimization (IPSO BP) is put forward to predict the dam displacement. The weights and threshold of the conventional BP neural network are optimized by IPSO, thus making up the shortage of BP network and improving the prediction accuracy. The observed longitudinal displacement of the typical section of a concrete gravity dam crest from January 10, 2012 to July 31, 2012 is taken as the research object. And based on the IPSO BP prediction model the simulation analysis is carried out. At the same time, in order to verify the effect of fitting and prediction of the model, a statistical model using the least squares method to make parameter analysis and PSO BP model are developed. It is found from the prediction accuracy given by this model that the model is superior to the conventional model; the fitting effect is the best; and the average relative error of the prediction results is the minimum. Therefore, it shows that this method is effective and feasible in prediction and analysis of dam engineering.
Key words:  improved particle swarm optimization algorithm  BP neural network  concrete gravity dam  displacement  prediction  simulation analysis
手机扫一扫看