引用本文:陈建忠,史忠科.用半离散中心迎风格式计算一维浅水方程[J].水利水运工程学报,2007,(1):7-11
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 893次   下载 890 本文二维码信息
码上扫一扫!
分享到: 微信 更多
用半离散中心迎风格式计算一维浅水方程
陈建忠,史忠科
西北工业大学,自动化学院,陕西,西安,710072
摘要:
将半离散中心迎风数值通量和三阶WENO重构结合起来,由此得到了一种求解一维浅水方程的高分辨率数值方法.对底坡项的离散保证了计算方法的和谐性,离散摩阻项的方法简单有效.时间的离散采用保持强稳定性质的Runge-Kutta方法.应用文中方法对几个典型算例进行检验计算,结果表明本文方法健全,而且对激波具有较高的分辨率.
关键词:  一维浅水方程  中心迎风格式  WENO重构
DOI:
分类号:TV131.3 TV131.4
基金项目:国家自然科学基金
Numerical solution of one-dimensional shallow water equations by semi-discrete central-upwind scheme
CHEN Jian-zhong,SHI Zhong-ke
Abstract:
A high-resolution method for solving one-dimensional shallow water equations is presented by combing the semi-discrete central-upwind numerical flux with the third-order weighted essentially non-oscillatory(WENO) reconstruction.The discretization of bottom topography assures well-balanced approximation and the discretization of friction slop is simple and effective.The third-order strong stability preserving Runge-Kutta method is used for time discretization.Validity of several typical samples show that this method is effective and has high precision for shock waves.
Key words:  one-dimensional shallow water equations  central-upwind scheme  WENO reconstruction
手机扫一扫看