DOI:10.16198/j.cnki.1009-640X.2016.04.005

李小梅,关云飞,凌华,等.考虑级配影响的堆石料强度与变形特性[J].水利水运工程学报,2016(4):32-39. (LI Xiao-mei, GUAN Yun-fei, LING Hua, et al. Experimental studies on strength and deformation behaviors of rockfill materials considering particle gradation[J]. Hydro-Science and Engineering, 2016(4): 32-39.)

考虑级配影响的堆石料强度与变形特性

李小梅^{1,2},关云飞²,凌 华²,武颖利²

(1. 同济大学 地下建筑与工程系, 上海 200092; 2. 南京水利科学研究院, 江苏 南京 210029)

摘要:利用大型三轴仪选用一种典型堆石料,通过设置4种级配、4种相对密度开展一系列不同围压作用下的 大型三轴压缩试验,以研究级配、密度、应力状态等因素对堆石料强度与变形特性的影响。基于以上试验,对比 分析不同级配、不同密度、不同围压条件下堆石料的应力变形特性,结果表明:试样颗粒越粗,剪切过程中试样 越呈现应变硬化和压缩变形特性,随着颗粒逐渐变细,应变软化和剪胀特性愈加明显;堆石料强度与变形特性 不仅与其密实和所处的应力状态有关,而且初始级配对其强度与变形特性有显著影响;堆石料强度包络线符合 幂函数关系,并通过分析计算验证了其合理性与正确性。分析结果为进一步研究堆石料的状态相关剪胀理论 及状态相关本构模型奠定了基础。

关 键 词: 堆石料;级配;密度;强度;变形 中图分类号:TU521.2 **文献标志码:** A **文章编号:**1009-640X(2016)04-0032-08

堆石料作为一种工程建筑材料,广泛应用于土木、水利、交通等工程中,如土石坝、防波堤、复合地基中的 碎石桩、铁路路基等,其受力变形特性在很大程度上决定了建(构)筑物的工作性态。

早在1980年,J. A. Charles 等^[1]研究了围压对堆石料抗剪强度的影响,得出摩尔破坏包线呈非线性,在 低围压下非线性尤为显著。堆石料的变形特性不仅取决于当前所处的应力状态,而且与其本身的密度有关。 国内外学者利用大型三轴仪对堆石料的强度与变形特性开展了相关研究,并取得了一些有意义的研究成果。 刘萌成等^[2-3]总结了静力条件下两种堆石料饱和试样的变形与强度特性变化规律,指出其应力-应变、侧向 应变与轴向应变符合指数关系,抗剪强度包络线在 *q-p*′平面上符合幂函数关系。A. Varadarajan 等^[4]通过高 围压作用下的大型三轴压缩试验研究了圆形及角砾状两种堆石料的变形特性,发现颗粒尺寸对颗粒形状不 同的堆石料的作用效应截然相反。张嘎等^[5]研究了粗颗粒土的应力变形特性,得出粗颗粒土的剪应力-应 变关系无明显应变软化,但其体变规律较为复杂,不仅随着剪应力发挥水平的发展表现出明显的从体缩到体 胀的特性,而且随着法向应力增大,其体胀趋势逐渐减弱,体缩趋势不断增强。另外,当剪应力随轴向应变增 加而趋于稳定时,体变仍在不断发展。田堪良等^[6]通过大型三轴剪切试验对一种人工爆破堆石料开展了相 关研究,揭示了其强度及应力-应变的变化规律,堆石料的强度包络线呈非线性,应力-应变曲线多呈现软化 型或弱硬化型。

蔡正银^[7]、丁树云^[8]等通过大型三轴试验研究了不同相对密度条件下堆石料的强度与变形特性,一致 认为堆石料在剪切过程中具有明显的应变软化和剪胀特性,其应变软化和剪胀与否取决于土样本身的密度 与应力状态:密度越大,围压越低,其应变软化和剪胀性就越明显。M. Kikumoto 等^[9]通过研究也得出粒状料 的强度依赖于其密度和所处的应力水平。Xiao 等^[10-11]通过大型三轴压缩试验研究了密度、围压、颗粒破碎

收稿日期: 2015-07-24

基金项目:国家自然科学基金资助项目(51179105)

作者简介: 李小梅(1986—), 女, 河南新乡人, 博士研究生, 主要从事土的基本特性研究。

E-mail:changping.mei@163.com

对塔城水库堆石料强度与变形特性的影响,得出峰值摩擦角随着围压或初始孔隙比增大而减小,随着相对颗 粒破碎指标的增加,峰值内摩擦角降低,体应变增大。雷国辉等^[12]从细观的角度分析了颗粒排列方式、形 状、大小、级配及应力水平对无黏性土剪胀变形特性的影响并建立了细观剪胀模型。

堆石料的强度及变形特性与矿物成分、级配、颗粒大小、形状、应力条件等因素有关,目前对堆石料强度 与变形特性的研究局限于某一个或几个影响因素,系统研究成果较少。本文选用一种典型堆石料,通过设置 4种级配、4种相对密度开展一系列不同围压作用下的大型三轴压缩试验,以研究级配、相对密度、应力状态 等因素对堆石料强度与变形特性的影响。

试验方案

1.1 试验设备

试验采用水利部土石坝破坏机理与防控技术重点实验室大型三轴仪,试样尺寸为 Φ300 mm×700 mm。 该设备主要研究筑坝材料的强度与变形特性,主要技术参数为:最大围压 2.5 MPa;最大轴向荷载 700 kN;最 大轴向动出力 500 kN;最大垂直变形 150 mm。

堆石料渗透性能良好,采用各向等压固结排水剪切试验方法,剪切速率控制为2.0 mm/min,试验采用应 变控制。试样的最大允许粒径与试样直径之比(径径比)d_{max}/D为0.2。

1.2 试样制备

由于试验设备试样直径仅为 300 mm,试样的径径比 d_{max}/D 为 0.2。根据《土工试验规程》^[13],本次试验 取最大粒径为 60 mm,按照小于 5 mm 颗粒含量配置 4 种典型级配开展三轴压缩试验。试验所用试样原材料 为白云质灰岩,取样具有代表性,岩性单一、均匀,颗粒形状为棱角状,颗粒密度为 2.77 g/cm³,各试验级配参 数见表 1,粒径分布曲线见图 1。

试样采用分层击实法制备,共分5层。制备完成后采用水头法饱和,并确保每个试样试验前的孔隙水压 力系数 B 值大于 0.95。

级配	<5 mm 颗粒	曲率系数	不均匀	级配	级配	<5 mm 颗粒	曲率系数	不均匀	级配参量
	含量/%	$C_{ m c}$	系数 C_{u}	参量 $\lambda^{[14]}$		含量/%	$C_{ m c}$	系数 C _u	$\lambda^{[14]}$
级配1	10. 0	1.18	6.00	9.01	级配 3	24.0	2.17	17.23	14.13
级配 2	17.0	1.64	10. 55	11.46	级配 4	31.0	1.70	18.77	19.59

表1 试验级配参数

Tab. 1 Parameters of each gradation sample

注:4种级配的最大粒径均为60 mm。

1.3 技术方案

本文旨在研究堆石料强度与变形特性,分别在4种 不同粒径分布条件下选择4种相对密度(0.60,0.75, 0.90,1.00),分别在围压300,600,1000,1500kPa作用 下进行大型三轴固结排水剪切试验。受试验设备限制, 本次试验以轴向应变20%作为停止标准。试验结束后对 各试样的试验结果进行分析,研究级配、密度、应力状态 对堆石料强度与变形特性的影响。

2 考虑级配影响的堆石料变形特性

堆石料变形特性受诸多因素影响。本文通过开展一

Fig. 1 Particle distribution curves of each gradation rockfills sample

系列大型三轴压缩试验研究级配、密度、应力状态对其变形特性的影响。

2.1 剪应力-轴向应变

不同密度的 4 种级配试样在围压1 000 kPa 作用下受剪,剪应力 $\sigma_1 - \sigma_3$ 与轴向应变 ε_a 的关系曲线见图 2;级配 1 的不同密度试样分别在围压 300,600,1 000,1 500 kPa 作用下受剪,剪应力 $\sigma_1 - \sigma_3$ 与轴向应变 ε_a 的关系曲线见图 3。

图 2 不同级配试样的应力应变曲线 Fig. 2 Stress-strain curves of different gradation samples

Fig. 3 Stress-strain curves of different density samples

从图 2 可见:①试样在1 000 kPa 围压作用下,相对密度为 0.60 时,各试样偏应力随轴向应变增加呈逐渐增加趋势,均表现为应变硬化;级配 1 试样在相对密度为 1.00 时表现为应变软化,相对密度为 0.75,0.90 时均表现为应变硬化;而级配 2、级配 3、级配 4 试样在相对密度为 0.75,0.90,1.00 时均表现为应变软化;显然,小于 5 mm 颗粒含量越多,试样软化现象越明显。②试样相对密度一定时,小于 5 mm 颗粒含量越多,偏应力峰值越大,而且随着轴向应变增加,偏应力趋于稳定,试样的粒径分布对其残余强度影响较小。③小于 5 mm 颗粒含量越少的试样,在偏应力达到峰值时所产生的轴向变形越大,主要原因在于堆石料受压产生颗粒破碎,使得小于 5 mm 的细颗粒含量增加,进而充填了试样粗颗粒形成的空隙。

从图 3 可以得知:① 级配 1 试样,相对密度为 0. 60,0. 75,0. 90 时,在各围压作用下偏应力随轴向应变增加呈逐渐增加趋势,均表现为应变硬化;相对密度为 1. 00 时,在各围压作用下偏应力随轴向应变增加呈先增后减趋势,均表现为应变软化;显然,试样越密实,其软化现象越明显。②围压一定时,试样越密实,偏应力峰值越大,而且随着轴向应变的增加,偏应力趋于稳定,试样密度对其残余强度影响较小,而随着围压的增加,试样的残余强度增大。③ 试样越密实,在偏应力达到峰值时所产生的轴向变形越小,反之,则产生的轴向变形越大。④ 试样越密实,偏应力峰值越大,软化现象越明显;围压越高,偏应力峰值越大,而软化现象减弱。

综上所述,试样越密实,小于5 mm 颗粒含量越多,围压越高,偏应力峰值越大;试样越密实,小于5 mm 颗粒含量越多,围压越低,软化现象越显著。相对密度、级配对试样的残余强度影响较小,但围压对其残余强度影响较大,围压越高,残余强度越大。

2.2 体积应变-轴向应变

不同密度的 4 种级配试样在围压1 000 kPa 作用下受剪,体积应变 ε_{λ} 与轴向应变 ε_{λ} 的关系曲线见图 4。

Fig. 4 Relationships of volume strain and axial strain curves of different gradation samples

由图 4 可知:①1 000 kPa 围压作用下,级配 1 试样在相对密度为 0.60,0.75 时,试样体积应变随轴向应 变增加呈逐渐增加趋势,试样发生剪缩变形,相对密度为 0.90,1.00 时,试样体积应变随轴向应变增加呈先 增后减趋势,试样发生先剪缩后剪胀变形;级配 2 试样在相对密度为 0.60 时发生剪缩变形,相对密度为 0.75,0.90,1.00 时均发生剪胀变形;而不同密度的级配 3、级配 4 试样均发生剪胀变形;显然,小于 5 mm 颗 粒含量越多,试样剪胀现象越显著。②相对密度一定时,小于 5 mm 颗粒含量越多,正体积应变峰值越小,而 且随着轴向应变的增加,体积应变趋于稳定。③小于 5 mm 颗粒含量越少的试样,剪缩变形越大,主要原因 在于堆石料受压产生颗粒破碎,使得小于5 mm 细颗粒含量增加,进而充填了试样粗颗粒形成的空隙。

级配 1 的不同密度试样分别在围压 300,600,1 000,1 500 kPa 作用下受剪,体积应变 ε_v 与轴向应变 ε_a 的关系曲线见图 5。

图 5 不同密度试样的体积应变与轴向应变关系曲线 Fig. 5 Relationships of volume strain and axial strain curves of different density samples

从图 5 可知:① 级配 1 试样,在围压 300 kPa 作用下体积应变随轴向应变增加呈先增后减趋势,表现为 先剪缩后剪胀,在围压1 500 kPa 作用下体积应变随轴向应变增加呈增加趋势,均表现为剪缩变形;相对密度 为 0.60 时,在围压 600 和1 000 kPa 作用下表现为剪缩现象;相对密度为 0.75,0.90,1.00 时,在围压 600 和 1 000 kPa 作用下表现为先剪缩后剪胀;显然,试样越密实,其剪胀现象越显著。②围压一定时,体积应变随 着轴向应变的增加趋于稳定。③试样越密实,所产生的压缩变形越小,剪胀现象越显著,反之,则产生的压缩 变形越大。

综上所述,试样越密实,小于5 mm 颗粒含量越多,围压越低,剪胀现象越显著。

经上述研究发现,堆石料变形特性不仅与其密实程度和所处应力状态有关,而且初始级配对其变形特性 的影响不可忽视。

3 考虑级配影响的堆石料强度特性

土的抗剪强度是土体对于外荷载所产生的剪应力的抵抗能力,莫尔-库仑破坏准则是用来描述砂性土、 黏性土的重要准则,而其是否适用于描述堆石料这样的粗粒料还有待进一步研究。堆石料强度特性受诸多 因素影响,本文通过大型三轴压缩试验研究了级配、密度对其强度特性的影响。

3.1 莫尔-库仑强度

以相对密度 0.9 的级配 1 试样为例,在围压 300,600,1 000,1 500 kPa 作用下进行固结排水剪切试验, 以研究莫尔-库仑破坏准则用于描述堆石料强度的局限性。在 *τ-σ* 面上分别作 300 和 600 kPa 围压作用下 的莫尔圆包线,600 和1 000 kPa 围压作用下的莫尔圆包线以及1 000和1 500 kPa 围压作用下的莫尔圆包线, 莫尔圆及其包络线见图 6。 从图 6 可知:① 莫尔圆破坏包线随着围压的增加,强 度包线的斜率逐渐减小,试样内摩擦角减小,咬合力增 加;②堆石料颗粒较大,在某一围压作用下进行剪切伴随 有颗粒破碎、颗粒重组,与细颗粒土、黏性土存在较大差 异,因而摩尔-库伦强度准则用于描述堆石料强度有一定 局限性。

3.2 密度对堆石料强度特性的影响

针对级配 1 试样,分析相对密度分别为 0.60,0.75, 0.90,1.00 时在围压 300,600,1 000和1 500 kPa 作用下 的强度特性,为保证量纲的一致性,将剪应力 τ 和法向应 力 σ 分别除以大气压强 P_a ,强度包络线见图 7。

从图 7 可以看出:① 强度包络线均呈非线性变化 趋势,符合幂函数关系,即 $\tau/P_a = A(\sigma/P_a)^B$,其中 τ 为 破坏面上的剪应力, σ 为破坏面上的法向应力,A,B为 强度参数;②试样密度不同时,强度参数A,B存在显著 差异,A,B为相对密度 D_r 的函数,即 $A = f(D_r), B = g$ (D_r);③随着试样密度增大,堆石料抗剪强度逐渐增 大,强度包络线偏离横轴 σ 轴距离逐渐增大。

3.3 级配对堆石料强度特性的影响

以相对密度 $D_r = 0.90$ 试样为例,按级配 1、级配 2、 级配 3、级配 4 的粒径分布进行配置,分析其在围压 300,600,1 000 和1 500 kPa 作用下的强度特性,为保证 量纲的一致性,将剪应力 τ 和法向应力 σ 分别除以大气 压强 P_a ,强度包络线见图 8。

从图 8 可以看出:①强度包络线呈非线性变化趋势, 符合幂函数关系,即 $\tau/P_a = A(\sigma/P_a)^B$,其中 τ 为破坏面 上的剪应力, σ 为破坏面上的法向应力,A,B为强度参 数;② 试样级配不同时,强度参数 A存在显著差异,A为 级配参数 λ 的函数,即 $A = f(\lambda)$,而级配参数 λ 对强度参 数 B影响较小,可以忽略;③随着小于 5 mm 颗粒含量的 增加,堆石料抗剪强度逐渐增大,强度包络线偏离横轴 σ 轴距离逐渐增大,但增加幅度有减小趋势。

针对本文研究的 4 种级配、4 种密度的试样在围压 300,600,1 000和1 500 kPa作用下的抗剪强度特性,通过 二元线性回归分析,得出强度参数 A 与相对密度 D_r 、级配 参数 λ 的相关关系为: $A = a + b\lambda + cD_r$,对本文研究的堆

图 7 不同密度试样的强度包络线(级配1)

Fig. 7 Strength envelope of different density samples (gradation 1)

石料,a=0.625,b=0.013,c=2.876。强度参数 B 与相对密度 D_r 呈线性关系,即 B = $m + nD_r$,对本文研究的 堆石料,m=0.916,n=-0.088。

4 堆石料强度特性变化规律

 τ - σ 平面上, 堆石料的抗剪强度包络线呈幂函数变化趋势, 即

$$\tau/P_{a} = A(\sigma/P_{a})^{B} \tag{1}$$

(2)

(3)

$$B = m + nD$$

式中: τ 为破坏面上的剪应力, σ 为破坏面上的法向应 力,A,B为强度参数, D_i 为相对密度, λ 为级配参数,a,b, c,m,n为材料常数,针对本文研究的堆石料,a=0.625, $b = 0.013, c = 0.876, m = 0.916, n = -0.088_{\odot}$

采用相对密度为 0.75 的级配 1 和级配 3 试样的试验 参数进行计算分析,并与试验结果进行对比,见图9,由图 可见,计算结果与试验结果吻合较好,证实了堆石料的抗 剪强度变化规律合理有效。

5 结 语

利用大型三轴压缩仪,对4种级配、4种不同密度的 堆石料试样开展一系列三轴剪切试验,通过分析研究试验结果得出如下结论:

(1)试样越密实,小于5 mm颗粒含量越多,围压越高,偏应力峰值越大,而且密度、级配对试样的残余强 度影响较小,但围压对其残余强度影响较大,围压越高,残余强度越大。

(2)试样越密实,小于5 mm 颗粒含量越多,围压越低,应变软化及剪胀现象越明显。

(3) 堆石料抗剪强度包络线呈幂函数变化趋势, 与其初始密度及级配关系密切, 并通过分析计算验证了 强度参数的合理性与准确性。

(4) 堆石料强度与变形特性不仅与其密实程度和所处应力状态有关,且初始级配对其强度与变形特性 的影响不可忽视。

参 考 文 献:

- [1] CHARLES J A, WATTS K S. The Influence of confining pressure on the shear strength of compacted rockfill[J]. Geotechnique, 1980, 30(4): 353-367.
- [2] 刘萌成, 高玉峰, 刘汉龙, 等. 堆石料变形与强度特性的大型三轴试验研究[J]. 岩石力学与工程学报, 2003, 22(7): 1104-1111. (LIU Meng-cheng, GAO Yu-feng, LIU Han-long, et al. Large-scale triaxial test study on deformation and strength characteristics of rockfill materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(7): 1104-1111. (in Chinese))
- [3] 刘萌成,黄晓明,高玉峰.堆石料强度变形特性与非线性弹性本构模型研究[J].岩土力学,2004,25(5):798-802.(LIU Meng-cheng, HUANG Xiao-ming, GAO Yu-feng. Research on strength-deformation characteristics and nonlinear elastic model of rockfills [J]. Rock and Soil Mechanics, 2004, 25(5): 798-802. (in Chinese))
- [4] VARADARAJAN A, SHARMA K G, VENKATACHALAM K, et al. Testing and modeling two rockfill materials [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129(3): 206-218.
- [5] 张嘎, 张建民. 粗颗粒土的应力应变特性及其数学描述研究[J]. 岩土力学, 2004, 25(10): 1587-1591. (ZHANG Ga, ZHANG Jian-min. Study on behavior of coarse grained soil and its modeling [J]. Rock and Soil Mechanics, 2004, 25(10): 1587-1591. (in Chinese))
- [6] 田堪良, 张慧莉, 骆亚生. 堆石料的剪切强度与应力-应变特性[J]. 岩石力学与工程学报, 2005, 24(4): 657-661. (TIAN Kan-liang, ZHANG Hui-li, LUO Ya-sheng. Shear strength and stress-strain properties of rockfill materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4): 657-661. (in Chinese))
- [7] 蔡正银, 丁树云, 毕庆涛. 堆石料强度和变形特性数值模拟[J]. 岩石力学与工程学报, 2009, 28(7): 1327-1334. (CAI Zheng-yin, DING Shu-yun, BI Qing-tao. Numerical simulation of strength and deformation characteristics of rockfill[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1327-1334. (in Chinese))

Fig. 9 Comparison between calculation results and test results of shear stregth of rockfill materials

- [8] 丁树云,蔡正银,凌华. 堆石料的强度与变形特性及临界状态研究[J]. 岩土工程学报, 2010, 32(2): 248-252. (DING Shu-yun, CAI Zheng-yin, LING Hua. Strength and deformation characteristics and critical state of rock fill[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(2): 248-252. (in Chinese))
- [9] KIKUMOTO M, MUIR WOOD D, RUSSELL A. Particle crushing and deformation behavior [J]. Soils and Foundations, 2010, 50 (4): 547-563.
- [10] XIAO Yang, LIU Han-long, CHEN Yu-min, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 1-16.
- [11] XIAO Yang, LIU Han-long, CHEN Yu-min, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: influence of particle breakage[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (12): 1-10.
- [12] 雷国辉,陈晶晶. 无黏性土剪胀性的细观认识[J]. 岩土工程学报, 2011, 33(9): 1333-1339. (LEI Guo-hui, CHEN Jing-jing. Microscopic understanding of dilatancy in cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (9): 1333-1339. (in Chinese))
- [13] SL 237—1999 土工试验规程[S]. (SL 237—1999 Specification of soil test[S]. (in Chinese))
- [14] 朱俊高,翁厚洋,吴晓铭,等. 粗粒料级配缩尺后压实密度试验研究[J]. 岩土力学,2010,31(8):2394-2398. (ZHU Jun-gao, WENG Hou-yang, WU Xiao-ming, et al. Experimental study of compact density of scaled coarse-drained soil[J]. Rock and Soil Mechanics, 2010, 31(8):2394-2398. (in Chinese))

Experimental studies on strength and deformation behaviors of rockfill materials considering particle gradation

LI Xiao-mei^{1, 2}, GUAN Yun-fei², LING Hua², WU Ying-li²

(1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Nanjing Hydraulic Research Institute, Nanjing 210029, China)

Abstract: In order to study the influences of gradation, density and stress state on the strength and deformation behaviors of the rockfill materials, some typical materials are selected for large triaxial shearing tests, so a series of laboratory tests are designed under the conditions of different gradations, densities and confining pressures by the large triaxial equipment. According to the experimental results, and by analyzing and comparing the stress-strain characteristics, we can get many important conclusions: firstly, the larger the grain size of samples, the more obvious the strain hardening and compression behaviors among the shearing process, and on the contrary, the smaller the grain size of samples, the more obvious the strain softening and dilatancy properties; secondly, the strength and deformation of the rockfill materials are related to the density and stress state, and the influence of the sample initial gradation is so large that it should be paid more attention to; the last but not the least, the intensity envelope of the rockfill materials changes by a power function relationship, and the rationality and validity is verified by analyzing test results and calculation results. The research results of this paper are the basis of further studies of the state-dependent dilatancy theory and state-dependent constitutive model of the rockfill materials.

Key words: rockfill materials; gradation; density; strength; deformation